\[\frac{\partial}{\partial s} \mathbf{r} = \frac{\mathbf{r}(s + \Delta s, t) - \mathbf{r}(s, t)}{\Delta s} \]

\[\frac{\partial^2}{\partial t} \mathbf{r} = \frac{\mathbf{r}(s, t + \Delta t) - \mathbf{r}(s, t)}{\Delta t} \]

\[|\mathbf{a} \times \mathbf{b}| = \text{area of parallelogram defined by } \mathbf{a} \text{ and } \mathbf{b} \]

\[\mathbf{r}(s, t) = \chi(s, t) \hat{\mathbf{r}} \]

Sal Khan (Multivariable Calculus)
Scale

75 million users to date

>6 million Unique users / month

>220 million lessons delivered

1 billion problems answered

216 countries

20,000 classrooms around the world
Derivative intuition

Related videos: Calculus: Derivatives 1 (new HD version), Calculus: Derivatives 1

\[f(x) = 7x^3 \]

Drag each one of the 7 orange points up and down to adjust the slope of the corresponding tangent line.

The derivative of a function is defined as the slope of a line tangent to the curve at each point. Adjust the slopes of the lines to visually find the derivative \(\frac{df}{dx} \) at each point.

Answer

\[
\frac{df}{dx} f(-2) = -28 \\
\frac{df}{dx} f(-1.5) = -21 \\
\frac{df}{dx} f(-1) = -14 \\
\frac{df}{dx} f(0) = 0 \\
\frac{df}{dx} f(1) = 12.17 \\
\frac{df}{dx} f(1.5) = 0 \\
\frac{df}{dx} f(2) = 0
\]

Check Answer

Need help? Get a hint.
This will reset your streak!
I'd like a hint

Stuck? Watch a video.
This does not reset your streak.
Changing lives

“We recognized that we had found a powerful tool that reached students and changed their habits in ways we had never even considered possible.”
Small team. Huge scale.

In the last year, 24 employees reached 43 million unique students in 216 countries.