Skip to content Skip to navigation

Choice From Lists

May 2005
Working Paper
By  Ariel Rubinstein, Yuval Salant
The standard economic choice model assumes that the decision maker chooses from a set of alternatives. In contrast, we analyze a choice model where the decision maker encounters the alternatives in the form of a list. We present two axioms similar in nature to the classical axioms regarding choice from sets. We show that these axioms characterize all the choice functions from lists that choose either the ¯rst or the last optimal alternative in the list according to some preference relation. We then connect between choice functions from lists and the classical notions of choice correspondences and random choice functions. Finally, we examine a related model where the number of times an alternative appears in the list matters for choice.