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1. Introduction

The celebrated deferred acceptance algorithm of [8] not only finds a stable matching,

but also is weakly Pareto efficient and strategy-proof for agents on the proposing side of the

market, so long as each of those agents has unit demand [12]. Moreover, it is monotonic

in the sense that an agent is weakly better off if she becomes more preferred by others

[6]. Given these desirable features, the deferred acceptance algorithm is used in practical

matching problems such as public school choice [1, 2, 3].

By sharp contrast, it is well-known that, in the more general many-to-many setting,

no stable mechanism is weakly Pareto efficient, strategy-proof, or monotonic.1 Given that

these properties may be important for the proper functioning of many-to-many markets in

numerous contexts, the lack of these properties may make stable matching mechanisms less

desirable for practical application in many-to-many matching markets. A natural question,

then, is whether there is any restriction on preferences that enables a stable mechanism to

satisfy these properties for agents with multi-unit demand on one side of the market.

This paper considers the many-to-many matching problem under a stringent domain

restriction on preferences called the “max-min criterion”, introduced by [4]. It is shown

that, even under the restriction, there is no stable mechanism that, for agents on one side

of the market, is either weakly Pareto efficient, strategy-proof, or monotonic. In particular,

our result implies that three of the main results (Theorems 5, 6, and 7) of [4] are incorrect.

2. Model

There is a finite set R of row-players and a finite set C of column-players.2 Each

c ∈ C has a strict preference relation �c over R and the outside option denoted by ∅ and

its quota qc. The preference profile of all column-players is denoted by �C≡ (�c)c∈C . The

weak preference relation associated with �c is denoted by %c and so we write r1 %c r2

(where r1, r2 ∈ R) if either r1 �c r2 or r1 = r2. Corresponding notation is also used for the

row-players. We denote the quota of row-player r by pr. A preference profile of all players

is denoted by �≡ (�R,�C).

We extend the preferences (over individuals) to those over subsets of agents on the other

side of the market. Following [4], we say that the preference relation of r ∈ R satisfies the

max-min criterion if the following condition is met: For any C1, C2 ⊆ C with |C1| ≤ pr

and |C2| ≤ pr, if (1) |C1| ≥ |C2| and r strictly prefers the least preferred column-player

1See, for instance, [5] who use an example of [11] to exhibit this fact.
2For example, row- and column-players may correspond to workers and firms.
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in C1 to the least preferred column-player in C2, or (2) C1 = C2, then C1 %r C2.
3 The

preference relation of c satisfies the max-min criterion if the corresponding condition is met.

Throughout the paper, we assume that the preference relation of every player satisfies the

max-min criterion.

2.1. Matching Mechanisms and Their Properties

A matching is a vector µ = (µ(r))r∈R that assigns each r a set of at most pr column-

players µ(r) ⊆ C, and each c ∈ C is also assigned at most qc row-players. We denote by

µ(c) ≡ {r ∈ R|c ∈ µ(r)} the set of row players who are assigned to c.

A matching µ is individually rational if j %i ∅ for every i ∈ C∪R and every j ∈ µ(i).4

A matching µ is blocked by (r, c) ∈ R×C if (1) c �r ∅ and r �c ∅, (2) |µ(r)| < pr or c �r c
′

for some c′ ∈ µ(r), and (3) |µ(c)| < qc or r �c r
′ for some r′ ∈ µ(c). A matching µ is stable if

it is individually rational and it is not blocked; it is well-known that a stable matching always

exists [12]. A matching µ is weakly row-efficient if there exists no individually rational

matching µ′ such that µ′(r) �r µ(r) for all r ∈ R.5 A weakly column-efficient matching is

also defined in the same way.

Given the player sets R and C, a mechanism is a function from the set of (reported)

preference profiles to the set of matchings. A mechanism is stable if the outcome of

that mechanism is a stable matching for every preference profile. A mechanism is weakly

row(column)-efficient if the outcome of that mechanism is a weakly row(column)-efficient

matching for every preference profile. A mechanism is row-strategy-proof if at every

preference profile, no row player can obtain a strictly better set of column-players by mis-

reporting her preferences. A column-strategy-proof mechanism is also defined in the same

fashion.

To define one more property of a mechanism, we first introduce the following concept:

Preference relation �′r is an improvement for c over �r if

(1) For all c1 ∈ C ∪ {∅}, if c �r c1, then c �′r c1,
(2) For all c1, c2 ∈ (C ∪ {∅}) \ c, c1 �′r c2 if and only if c1 �r c2,

and the capacity associated with �′r is equal to that with �r. A row-player preference profile

�′R is an improvement for c over �R if for every r, �′r is an improvement for c over �r. We

now define the following property of a mechanism: A mechanism ϕ is column-monotone

if, for any preference profile �, any c ∈ C, and any row-player preference profile �R and

3Similar conditions were studied by, for instance, [13, 7, 10].
4Throughout the paper, we denote singleton set {x} by x when there is no room for confusion.
5This property is called “row-efficiency” by [4]. Here we add “weakly” to emphasize the difference between

this property and standard Pareto efficiency.
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�′R, if �′R is an improvement for c over �R, then c weakly prefers ϕ(�′R,�C) to ϕ(�R,�C).

This definition requires that the outcome of a mechanism be weakly better for a column-

player if that column-player becomes more preferred by the row-players. A row-monotone

mechanism is defined analogously. This property is first introduced by [6] as “respecting

improvements” and they analyze it in a class of many-to-one matching problems.

3. Results

Consider the following example.6 Let R = {r1, r2} and C = {c1, c2}. Consider the

following preferences:

�r1 :c2, c1, ∅,

�r2 :c2, c1, ∅,

�c1 :r1, r2, ∅,

�c2 :r2, r1, ∅,

where the notational convention is that r1 prefers c2 most, c1 second, and ∅ third, and so

forth. (This notation is used throughout.) The quotas of the players are given by qc1 = 2

and qc2 = pr1 = pr2 = 1. Finally, let the preferences of each agent over sets of agents on the

other side of the market be consistent with the max-min criterion.

Let ϕ be any stable mechanism. Under the preference profile �≡ (�r1 ,�r2 ,�c1 ,�c2), the

following matching is the unique stable matching:

ϕ(�) =

(
c1 c2

r1 r2

)
,

where this matrix notation represents the matching where c1 is matched with r1 while c2 is

matched with r2. (Again, this notation is used throughout.) Stability of ϕ(�) immediately

follows from the definition. To see that ϕ(�) is the unique stable matching, note that in

any stable matching, every row player has to be matched to a column player. (If there

is an unmatched row player, then there is also an unmatched column player, who in turn

blocks the matching with the unmatched row player.) The only such individually rational

6This example is borrowed from [9].
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matchings other than ϕ(�) are(
c1 c2

r2 r1

)
and

(
c1 c2

{r1, r2} ∅

)
,

but (r2, c2) blocks both matchings.

Now, consider a different set of preferences for agent r2, �′r2 : c1, c2, ∅. Note that �′r2 is

an improvement for c1 over �r2 . It is easy to see that under preference profile (�′r2 ,�−r2),
7,

the following matching is the unique stable matching:

ϕ(�′r2 ,�−r2) =

(
c1 c2

r2 r1

)
.

To see the uniqueness, note that by the same reason as in the previous paragraph, in any

stable matching, every row player is matched with a column player. Except for ϕ(�′r2 ,�−r2),
the only such individually rational matchings are(

c1 c2

r1 r2

)
and

(
c1 c2

{r1, r2} ∅

)

but (r2, c1) and (r1, c2) block these matchings, respectively.

For this example, first recall that at preference profile (�′r2 ,�−r2), the unique stable

matching is ϕ(�′r2 ,�−r2) while both column-players strictly prefer another (unstable) match-

ing (
c1 c2

r1 r2

)
to ϕ(�′r2 ,�−r2). This means that no stable mechanism produces a weakly column-efficient

matching at (�′r2 ,�−r2). Thus the following result holds.

Theorem 1. There is no stable mechanism that is weakly row- or column-efficient even if

the preferences of the players satisfy the max-min criterion.8,9

7Subscript −i indicates (C ∪ R) \ i, that is, the set of all agents except for i. For instance, �−r2 is the
profile of preferences of all row- and column-players except for r2.

8The preceding discussion deals only with weak column-efficiency, but the same argument can also be
applied to weak row-efficiency thanks to the symmetry of the two sides of the market (row- and column-
players).

9One can also show our Theorem 1 by adapting the example depicted in Figure 4 of [5] (which considers
a related setting but allows for fractional matchings) to our setting.
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Also, in the above example, even though �′r2 is an improvement for c1 over �r2 , c1 strictly

prefers ϕ(�) (under which c1 obtains r1) to ϕ(�′r2 ,�−r2)(c1) (under which c1 obtains r2).

Thus, for any stable mechanism, ϕ is not column- or row-monotone at �, which implies the

following result.

Theorem 2. There is no stable mechanism that is row- or column-monotone even if the

preferences of the players satisfy the max-min criterion.

Finally, assume that the true preference profile is (�′r2 ,�−r2) and consider the following

preference relation of c1:

�′c1 : r1, ∅.

Then it is easy to verify that at preference profile (�r1 ,�′r2 ,�
′
c1
,�c2), the unique stable

matching is (
c1 c2

r1 r2

)
.

Given that r1 �c1 r2 and that r2 is the only row-player matched to c1 under ϕ(�′r2 ,�−r2)(c1),
we have that for any stable mechanism, reporting �′c1 (instead of true �c1) is a profitable

deviation for c1 at (�′r2 ,�−r2), proving the following result.

Theorem 3. There is no stable mechanism that is row- or column-strategy-proof even if the

preferences of the players satisfy the max-min criterion.

Consequently, the above Theorems imply the following result.

Corollary 1. All of the following claims by [4] are incorrect:

• If the preferences of the players satisfy the max-min criterion, then the so-called “row(column)-

optimal stable” mechanism is the unique stable mechanism that is weakly row(column)-

efficient (Theorem 5).

• If the preferences of the players satisfy the max-min criterion, then the row(column)-

optimal stable mechanism is the unique stable mechanism that is row(column)-monotone

(Theorem 6).

• If the preferences of the players satisfy the max-min criterion, then the row(column)-

optimal stable mechanism is the unique stable mechanism that is row(column)-strategy-

proof (Theorem 7).
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Remark. Note that the max-min criterion as defined by [4] only imposes on the preferences

of an agent a partial ordering over sets of agents on the other side of the market. Never-

theless, the above example is constructed so that Corollary 1 remains valid as well for any

specification of the agents’ preferences consistent with the max-min criterion.

Remark. Note that in the above example, the quotas of both row players are one. Therefore,

even for the many-to-one matching problem under the restriction of the max-min criterion

(and responsiveness due to [11]), the impossibilities in Theorems 1, 2, and 3 are still true

and thus the three claims by [4] do not hold.

4. Discussion

In [5], Bäıou and Balinski consider a related model but allow for fractional matchings

(representing, e.g., the amount of time) between players, imposing pair-specific bounds on

the size of the relationship between a pair of agents (in addition to the usual quotas on

the total capacity for each agent). Analogous results to our Theorems 1 to 3 hold even in

that setting if agents’ preferences are only required to satisfy the max-min criterion. The

counterexample constructed above can easily be adapted to that setting by showing that, for

both preference profiles used in our counterexample, the unique stable match in our setting

corresponds to a unique stable match in the setting of [5].

However, in [5], Bäıou and Balinski introduce a more stringent condition on preferences,

the generalized max-min criterion. This criterion imposes, in the context of [4], the additional

restriction on preferences that an agent is indifferent between any two allocations in which

that agent is assigned the same number of partners yet does not fulfill his quota.10 In

particular, for the special case where the quota of each column-player is guaranteed to

be fulfilled, the max-min criterion and generalized max-min preferences coincide. When

agents have generalized max-min preferences, [5] state that the row-optimal mechanism is

the unique weakly row-efficient (Theorem 1), row-monotone (Theorem 3), and row-strategy-

proof (Theorem 4) mechanism. These results of [5] would imply that the conclusions of

our Corollary no longer hold when the more stringent condition of generalized max-min

preferences is imposed. Note that, in particular, our counterexample does not apply when

the assumption of generalized max-min preferences is imposed, as under generalized max-min

preferences, {r1} �c1 {r2} even though r1 �c1 r2.
11

10Note that the setting of [5] allows for fractional matchings, so this additional restriction of generalized
max-min preferences is that an agent is indifferent between any two allocations in which that agent is assigned
the same total number of hours while not fulfilling his quota.

11Recall that the quota of c1 is 2.
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4.1. Counterexample to Theorem 1 of [5]

However, Theorem 1 of [5] that the row-optimal stable mechanism is the unique weakly

row-efficient mechanism is incorrect. Moreover, this lack of uniqueness carries over to our

setting. In order to demonstrate our counterexample, we use terminology and notation of [5]

in the remainder of this paper. Let x be a matrix indexed by row and column agents such

that x(i, j) represents the amount of time that row-agent i works for column-agent j. The

matrix x is an allocation if all quotas (both for individual agents and pairs) are satisfied.

In [5], an allocation x is said to be row-efficient if there is no allocation y, stable or not,

satisfying y �i x for every row-agent i. Note that this is the same notion as the concept

which [4] and our paper call “weak row-efficiency,”12 and it is “weak” in that y only precludes

x from being weakly row-efficient if every row agent strictly prefers y to x. Following [5],

let χI denote the “row-optimal” stable mechanism, i.e., the mechanism which always selects

the row-optimal stable allocation.13

Claim 1 (Theorem 1 of [5]). If the preferences of the players satisfy the generalized max-min

criterion, then χI is the unique row-efficient stable mechanism.

This claim is incorrect. Specifically, the following counterexample shows that there exists an-

other row-efficient stable mechanism (assuming that χI is row-efficient). Let R = {r1, r2, r3}
and C = {c1, c2, c3}. Consider the following preference profile �:

�r1 :c1, c2, c3, �r2 :c2, c1, c3, �r3 :c3, c2, c1,

�c1 :r2, r1, r3, �c2 :r1, r2, r3, �c3 :r3, r1, r2.

Let the capacity of every agent be one (as well as the capacity of each pair). Note that the

preferences of each agent are consistent with the generalized max-min criterion of [5] as each

agent has a capacity of one.14

Under the above preference profile �, there are two stable allocations:

µ =

(
c1 c2 c3

r1 r2 r3

)
, µ′ =

(
c1 c2 c3

r2 r1 r3

)
,

12Recall that the setting of [5] is slightly different from that of [4] and our paper in that the former allows
for both fractional allocations while the latter allows only binary allocations. However, the example that we
present here works for both settings.

13It is well-known that a row-optimal stable allocation (i.e., a stable allocation x such that x %i y for
every row-agent i and for every stable allocation y) exists and is unique.

14The agents’ preferences over fractional allocations are defined according to the generalized max-min
criterion, although it does not affect the following argument.
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where our matrix notation now denotes that µ is a matching where c1 is matched with r1,

c2 is matched with r2, and c3 is matched with r3 up to their full capacity of one. µ is the

row-optimal stable allocation and µ′ is the column-optimal stable allocation. Note that,

however, both µ and µ′ are row-efficient. This is because r3 is matched to his most preferred

partner c3 in both µ and µ′, so there cannot exist any other allocation that r3 strictly prefers.

Now, consider an allocation mechanism φ such that

(1) for the above preference profile �, φ selects µ′, and

(2) φ selects the row-optimal stable matching for any other preference profile.

This mechanism is stable, and it is obviously different from χI (recall that χI is defined as

the mechanism that produces the row-optimal stable allocation for every preference profile).

However, φ is row-efficient if χI is row-efficient because

(1) µ′ is row-efficient for preference profile � by the above argument, and

(2) for any other preference profile, φ coincides with the row-optimal stable mechanism

χI , which is row-efficient.

We reiterate that φ is row-efficient because row-efficiency only requires that there exists

no other allocation which every row agent strictly prefers with respect to the generalized

max-min criterion. However, the result cannot be salvaged by strengthening row-efficiency

to require that no other allocation exists which every row-agent weakly prefers, with at least

one strictly, since, as is well-known, even the row-optimal stable mechanism violates this

stronger property (see Example 2.31 of [12], for instance).

5. Conclusion

In this paper, we studied many-to-many matching under a preference restriction called

the max-min criterion. Even under this restriction, we demonstrate that no stable mech-

anism satisfies weak Pareto efficiency, strategy-proofness, or monotonicity (respecting im-

provements) for agents on one side of the market. While these properties are claimed to hold

for some stable mechanism by [4], this claim is incorrect, as shown by this work.

The max-min criterion is very restrictive and, as such, strong conclusions have been

obtained under this restriction in past studies (see Section 2 and, in particular, footnote 3).

Despite this, our results show that even the basic properties of matching mechanisms known

for one-to-one settings (see [12, 6]) do not extend to many-to-many settings even under the

max-min criterion.15 In fact, for any preference criterion such that, if an agent prefers r1 to

15The row-optimal stable mechanism satisfies these properties for row players in settings in which the row
players have unit demand.
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r2, then that agent also prefers {r1} to {r2}, there will not exist any mechanism which is

column-efficient, column-monotone, or column-strategy-proof.16 Since it seems natural that

the preferences over singleton sets should reflect the underlying preferences over partners, any

condition under which weak column-efficiency, column-monotonicity, and column-strategy-

proofness are satisfied for some stable mechanism will be very restrictive.
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