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Abstract

In most variants of the Hotelling-Downs model of election, it is assumed that

voters have concave utility functions. This assumption is arguably justified in is-

sues such as economic policies, but convex utilities are perhaps more appropriate in

others such as moral or religious issues. In this paper we analyze the implications

of convex utility functions in a two-candidate probabilistic voting model with a po-

larized voter distribution. We show that the equilibrium policies diverge if and only

if voters’ utility function is sufficiently convex. If two or more issues are involved,

policies converge in “concave issues” and diverge in “convex issues.”

1 Introduction

A standard practice in the literature of electoral competition a la Hotelling-Downs is to as-

sume that voters have concave utility function that depends on the distance between their

bliss points and the realized policy (Hotelling (1929), Downs (1957) and Black (1958)).

However, in reality, voters seem to have different patterns of preferences given different

political issues, and the assumption of concavity is likely realistic only in certain issues.
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and seminar participants at Harvard and the Fifteenth Decentralization Conference at Tokyo for helpful
comments. We thank Seung Hoon Lee and Pete Troyan for excellent research assistance.
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In this paper we argue that a variety of voter preferences naturally arise in electoral sit-

uations, and show that different patterns of voter preferences have different implications

on electoral outcomes. In particular, announced policies can diverge if voter utility func-

tion is convex with respect to the distance between the bliss point and the policy, while

concavity implies convergence.

Because most existing studies on spatial models of elections assume that voters’ utility

functions are concave, convex utility functions might seem to be unrealistic at first glance

(even though the assumption of single-peaked preferences is still preserved throughout this

paper).1 Justification for concave utility functions, however, seems unclear. A skeptical

view has been eloquently expressed by Osborne (1995) as follows:

The assumption of concavity is often adopted, first because it is associated with ‘risk

aversion’ and second because it makes it easier to show that an equilibrium exists.

However, I am uncomfortable with the implication of concavity that extremists are

highly sensitive to differences between moderate candidates (a view that seems to be

shared by Downs 1957, 119-20). ... Further, it is not clear that evidence that people

are risk averse in economic decision-making has any relevance here. I conclude that

in the absence of any convincing empirical evidence, it is not clear which of the

assumptions is more appropriate.

Indeed, non-concave utility functions are used extensively in the empirical literature.

Poole and Rosenthal (1997), for instance, argue that utility functions that are not con-

cave may fit the data better.2 In the theoretical literature, although concavity is often

assumed, Shepsle (1972) and Aragones and Postlewaite (2002) allow for convex utility

functions, relating them to the “intensity” of voter preferences. We also believe utility

functions that are not concave are sometimes plausible and useful in the voting context

and pursue the implications different properties of voters’ preferences have for the candi-

dates’ policy positions. However, to the best of our knowledge, neither Osborne (1995) nor

any subsequent work has found a link between convexity and policy divergence studied

in this paper.

1Convexity of the voter utility function that we employ in this paper does not imply the failure of
single-peakedness, although the latter might easily lead to divergent policies in equilibrium. Throughout
the paper we retain the assumption that the voter preferences are single-peaked, following the standard
assumption in the literature.

2According to Poole and Rosenthal (1997), a bell-shaped function fits the data better than a concave
function. As a bell-shaped function is composed of concave and convex parts, their study suggests
studying implications of convexity.
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To highlight the effect of voter preferences, this paper considers a probabilistic voting

model that is kept simple and tractable. As in the standard probabilistic voting model,

a voter votes for a candidate whose announced policy is closer to her bliss point with

higher probability, but not with probability one. The probability of voting for the closer

candidate is increasing in the utility difference between the two announced policies.3

While our setup closely follows that of standard models, we employ one novel feature.

Specifically, in our model voters’ utility function is not necessarily concave.

Our main finding is an unexpected relationship between voter preferences and equi-

librium policies. More specifically, when voters are more polarized than in the uniform

distribution, we show that there is a convexity threshold of voters’ utility function (i)

below which policy convergence is a unique equilibrium, and (ii) above which policy di-

vergence is a unique equilibrium. As the voters become more polarized, divergent policies

prevail in equilibrium for a wider range of voter utility functions. Moreover, we find that

social welfare is maximized in each divergent equilibrium, but not necessarily in every

convergent equilibrium.

Economic policy is arguably a concave issue, given the evidence that individuals are

risk averse in financial decisions. By contrast, voters may have convex utility functions

on moral or religious issues such as same-sex marriage. For example, when a civil union

law was introduced in Connecticut in 2005, Anne Stanback, president of a gay rights

advocacy organization Love Makes a Family, commented “It’s bittersweet” as it was a

move in the right direction but did not go far enough (Boston Globe, April 21, 2005).

The attitude of gay people to a State Supreme Court decision was in a sharp contrast,

when it ruled to legalize same-sex marriages in 2008: “The opinion in Connecticut was

hailed by jubilant gay couples and their advocates” (New York Times, October 11, 2008).

This difference is remarkable, given that laws defining civil unions provide most of the

legal benefits of marriage in all but name “marriage.” Indeed, the majority opinion in

the State Supreme Court declares “marriage and civil unions do embody the same legal

rights under our law.” Even so, the Court’s majority opinion seems to have recognized

the large utility difference for gay couples between a civil union and a marriage, as it

continues to write “they [marriage and civil unions] are by no means equal” and rules in

favor of gay couples. The strong dissatisfaction of gay couples regarding civil unions and

3There are a number of “microfoundations” of why voters may vote randomly, some of which we
explain in Section 2.
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the contrasting happiness they feel about traditional marriage suggest a convex utility

function, meaning that voters have strong feelings regarding policy changes around their

bliss points. Abortion may provide another example of convex utility functions: A pro-life

activist may equate abortion with murder and find it (almost) equally abhorrent, even if

it is conducted at an early stage of pregnancy.

While the anecdotes above are suggestive at best and they do not invalidate the

usefulness of the traditional election models in any way, we believe they still suggest a

new approach to understanding electoral competition.4 Recall that our theory predicts

that politicians tend to converge on concave issues and diverge on convex issues. This

prediction is consistent with the observed pattern of policies in American politics, where

candidates take similar positions on some issues such as economic policy, while they differ

sharply on other issues, especially on those with moral or religious content. For example,

the 2008 Democratic National Platform declared that they “support the full inclusion

of all families, including same-sex couples, in the life of our nation, and support equal

responsibility, benefits, and protections,” and “oppose the Defense of Marriage Act.”5

The Republican platform in the same year described the Democrats’ opposition to this

act as unbelievable, and wrote that they “call for a constitutional amendment that fully

protects marriage as a union of a man and a woman.”6

To obtain intuition for why policies can diverge under convex voter utility and a po-

larized voter distribution, suppose that the two candidates announce the optimal policies

4One question that has sometimes been raised to us is why we do not change the way we measure
the distance in the policy space instead of changing the utility function of voters, say by assuming that
the “middle” policy is closer to the rightist policy than the leftist policy. Our answer is that such an
exercise needs a substantial departure from the standard Hotelling-Downs framework and is potentially
intractable. For example, suppose that voters have a linear utility function and we move the “middle”
policy to the right. Then for left-wing voters, the utility difference between the middle policy and their
least preferred one becomes smaller than the difference between their most preferred policy and the
middle one (thus this movement of the middle policy would correspond to assuming convex utility in our
model). This implies, however, that for the right-wing voters the utility difference between the middle
policy and their least preferred one becomes larger than the one between their most preferred policy
and the middle one (thus the movement of the middle policy would correspond to concave utility in
our model). That is, if one were to analyze the issues analyzed in this paper by changing the metric in
the policy space, then different voters are associated with different metrics over the policy space (Eguia
(2010a,b) raises this point. He also points out that the use of concave utility in the Hotelling-Downs
framework is warranted only in limited cases. See also Azrieli (2011).) We believe the way we modify
the Hotelling-Downs framework is more tractable and directly to the point than the alternative one.

5The following is a main excerpt from the act. “No State, territory, or possession of the United States,
or Indian tribe, shall be required to give effect to any public act, record, or judicial proceeding of any
other State, territory, possession, or tribe respecting a relationship between persons of the same sex that
is treated as a marriage under the laws of such other State, territory, possession, or tribe, or a right or
claim arising from such relationship.”

6For more evidence and discussion on issues other than gay marriage, see Glaeser et al. (2005).
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for the leftist and the rightist voters, respectively. The leftist candidate experiences gain

and loss of votes if she moves her policy closer to the middle.7 The gain is from the cen-

trist and rightist voters. Since the population of centrist voters is small under polarized

distributions, the gain from them is small. For the rightist voters, the utility difference

between the leftist and the middle policies is relatively small because their utility function

is convex. In our probabilistic voting setting, this implies that few rightist voters change

their votes, and hence again the gain for the politician is small. On the other hand,

the utility difference for the leftist voters between the leftist and the middle policies are

relatively large. Thus many leftist voters change their votes, which constitutes a large

loss for the politician. Therefore, overall the leftist candidate prefers staying at the leftist

policy to moving toward the middle. This is the basic intuition behind the reason why

convex utility may imply policy divergence. On the contrary, voters with concave utility

functions care more about policy changes when the policy is far from their bliss points.

Thus candidates have incentives to position themselves at the middle, so that they can win

reasonably many votes from both sides of the distribution of voters. We generalize this

argument to characterize a necessary and sufficient condition for policy convergence and

divergence and conduct comparative statics. Although the analysis is more complicated,

a similar intuition is behind the general result.

We also introduce a model with more than one policy issue, for example, tax policy and

same-sex marriage. In that model, the candidates’ equilibrium policies diverge on “convex

issues,” i.e., issues for which voters’ utility function is convex, while they converge on

“concave issues,” as analogously defined. If voters’ utility function is convex on religious or

moral issues and concave on economic issues (as we discuss below), then our model predicts

policy convergence in economic policies and divergence on moral issues, as observed in

American politics (see Glaeser et al. (2005)).

In addition to convex utility functions, polarization of voter preferences plays an im-

portant role in our model. Popular media has been reporting polarization of Americans

in recent years.8 Some researchers also find suggestive, if not conclusive, evidence of po-

larization. McCarty et al. (2006) present evidence that suggests the existence of voter

polarization and its recent increase in terms of income. DiMaggio et al. (1996) and Evans

(2003) find that voters have not polarized on most issues but they have done so on abor-

7Exactly the same argument can be made for the rightist candidate.
8For example, Gelman (2008, Figure 3.2) finds that newspapers and magazines have recently increased

their use of political catchphrases such as “polarizing, polarized,” “red state,” and “blue state.”
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tion. Other researchers, such as Fiorina (2006), argue that polarization does not exist, or

at least has not increased among the general public over the past few decades, but that

politicians have become polarized.9 We do not take a strong stance on empirical evidence

and instead provide theoretical predictions on electoral outcomes given voter distributions,

an approach that enables us to understand the implications of voter polarization.

The voting literature on policy divergence is so huge that we do not attempt to present

a complete literature review here.10 Instead, we discuss a small subset of them and

highlight their differences from our paper. Palfrey (1984) considers the possibility of a

third party candidate; Alesina (1988) studies repeated interactions of policy-motivated

candidates; Roemer (1994) investigates policy-motivated candidates in a setting with

aggregate uncertainty about the position of the median voter; Osborne and Slivinski

(1996) and Besley and Coate (1997) consider citizen-candidate models; Callander (2005)

analyzes a model with multiple districts; Aragones and Palfrey (2002), Castanheira et

al. (2010), Groseclose (2001), and Kartik and McAfee (2007) allow for differences in the

personal qualities of candidates (such as charisma); and Glaeser et al. (2005) consider the

abilities of politicians to target political messages toward their core constituents, among

others. Compared to these works, the departure of our model from the Hotelling-Downs

framework is kept fairly small. For example, we obtain divergent equilibria even without

policy motivation of candidates or the possibility of entry by a third party. In addition,

our explanation of policy convergence and divergence based on voters’ utility function is

novel11 and enables us to obtain insights on the relationship between equilibrium policies

and social welfare.

The plan of the paper is as follows. Section 2 introduces the model. Section 3 studies

a uni-dimensional policy space. In Subsection 3.1, we consider a special case in which

the voter distribution is perfectly polarized. The intuition behind the results in this

subsection helps us understand the intuition for our main results in the next subsection.

In Subsection 3.2, we consider general voter distributions. We formally analyze how the

degrees of voter polarization and convexity of voters’ utility function influence policy

positions in equilibrium. We also consider the welfare implications of the convexity of

9See also Abramowitz (2010).
10See, for instance, Persson and Tabellini (2002) for a more comprehensive survey.
11While Osborne (1995) advocates research on voting with convex voter utility functions, neither that

work nor any subsequent work has found a link between convexity and policy divergence to the best of
our knowledge.
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voters’ utility function. In Section 4, we consider the case of a multi-dimensional policy

space. Section 5 concludes. All the proofs are relegated to the Appendix.

2 Basic Model

There is a one-dimensional policy space, P := {0, 1
2
, 1}, where the interpretation is that

policies 0, 1
2
, and 1 correspond to the leftist, the centrist, and the rightist policies, respec-

tively. A continuum of voters are distributed according to a probability mass function

f : P → [0, 1] with f
(

1
2

)
= c and f(0) = f(1) = 1−c

2
for c ∈ [0, 1

3
).12 Parameter c

represents the degree of centralization of the voter distribution. Two candidates A and

B simultaneously determine their positions, xA and xB. Candidate i = A,B obtains a

share of votes

P (xi, x−i) =
∑
x∈P

σ (u(|x− xi|)− u(|x− x−i|)) f(x), (1)

where x−i is the policy position taken by i’s opponent, u : P → R is a decreasing function,

i.e. u(x) < u(x′) if x > x′, and σ : R→ [0, 1] is a strictly increasing function that satisfies

σ(t) + σ(−t) = 1 and weak concavity for all t ∈ [0,∞).13

Two commonly used specifications of σ in the literature are a logistic function σ̂λ(t) =

1
1+e−λt

with parameter λ > 0 (logit model), and a cumulative distribution function of a

normal distribution σ̃p(t) =
∫ t
−∞

1√
2π/p2

e−p
2z2/2dz with parameter p > 0 (probit model).

The above model (1) is referred to as a probabilistic voting model.14 Let us provide

one “micro foundation” of this model because, while standard in the literature, it will

help us interpret the results of this paper.15 Function u is the voters’ deterministic utility

function which is assumed to be homogeneous across them. The voters are subject to

independently and identically distributed random shocks that affect their relative utility

12As we mentioned in the Introduction, we focus on the voter distributions that entail some degree of
polarization, by assuming c < 1

3 . It will turn out in Theorem 1 and Proposition 5 Part 1 that if c ≥ 1
3 then

policy convergence is the only Nash equilibrium of our model. Divergence can be a Nash equilibrium
when c > 1

3 if we assume that voters at the middle incur smaller cost from suboptimal policies than
extreme voters, but we refrain from including this possibility for simplicity.

13Our main result can be extended to cases with a weaker assumption that σ is nondecreasing, but the
statement of the result is more complicated with that assumption. See Appendix A.8 for detail.

14See Ledyard (1984) for a number of basic results on probabilistic voting.
15Other interpretations are given in the literature (see, for example, Persson and Tabellini (2002)). For

example, voters may not optimize but vote randomly, or the randomness may reflect subjective beliefs
on the part of candidates. The interpretation we give here seems to be the most consistent with the
standard rational choice framework.
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between the two candidates. Specifically, the utility difference of a voter with bliss point x

between the case when the elected candidate is i and the case when the elected candidate

is j 6= i is written as u(|x− xi|)− u(|x− xj|) + ξ, where the term u(|x− xi|)− u(|x− xj|)

reflects the utility difference from the policies implemented, and ξ is a random shock on

utility difference between candidates i and j for that voter. Each voter is assumed to

vote for the candidate who generates more overall utility to her if she is elected, knowing

her own realized values of the random term.16,17 If the random utility shock ξ follows the

cumulative distribution function σ, then this voter votes for candidate i with probability

σ(u(|x − xi|) − u(|x − xj|)). Our formulation implicitly assumes that no voters abstain,

so that P (xA, xB) + P (xB, xA) = 1 for any pair of xA and xB.

The logit and probit specifications correspond to special cases of (1) where the random

shock term ξ is a difference of two i.i.d. random shocks ξA and ξB (each of which could

be interpreted as random utility shock for each candidate) that follow the extreme value

distribution and normal distribution, respectively, independently and identically across

voters. The parameters λ and p measure how strongly voters respond to differences in

policy positions. Intuitively, the larger they are, the more the voters care about the

policy positions.18 In these models, the voting behavior approximates a deterministic

voting behavior of the Hotelling-Downs model as λ and p approach infinity, while the

voting behavior becomes completely random as they approach zero. While the logit and

probit specifications are used in the literature extensively19 and we will repeatedly mention

them for concreteness, all our results hold more generally under specification (1). In fact,

this specification does not even assume that the random shock term ξ is composed of a

difference of two i.i.d. shocks for the two candidates. Thus, for instance, if the quality of

one candidate is less uncertain than the other (because, say, the former is an incumbent

and the latter is a challenger), then the random utility shocks for these two candidates

may be different. Our model is general enough to accommodate such a situation.20

16When both candidates generate the same overall utility to a voter, each candidate is chosen by this
voter with some arbitrary probability. The specification does not affect the analysis since such an event
happens with probability zero.

17Since there are only two candidates, voting for the candidate with the higher overall utility is a weakly
dominant strategy for each voter. See Myerson and Weber (1993) and Fey (1997) for issues related to
voters’ strategic behavior when there are more than two candidates.

18In the current context, one could interpret λ or p as the “salience” or relative importance of the
political issue in consideration, compared to the idiosyncratic utility for each voter.

19See, for example, Anderson et al. (1992) and Yang (1995).
20As an extreme case, if the quality of one candidate is known so that the random utility shock for her

is always zero and the other candidate’s quality has random shocks following the distribution function σ,
then the voting behavior follows the specification represented by (1) associated with function σ.
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Without loss of generality, we normalize the utility function by setting u(0) = 1 and

u(1) = 0, and set u
(

1
2

)
= 1

2
− v where v ∈ (−1

2
, 1

2
). Parameter v denotes the degree

of convexity of the utility function. Hence, we say that u is convex if v ≥ 0 and u is

concave if v ≤ 0. We say that u is strictly convex if v > 0 and u is strictly concave if

v < 0.

There are only three points in the policy space in our model. While it may be tempt-

ing to assume that voters are distributed over a continuous policy space, our three-point

model has at least two advantages over such a model. First, our model is simple and very

tractable. With a continuous policy space, by contrast, even the existence of Nash equilib-

rium is not guaranteed. Second, our model allows us to unambiguously order all possible

voter utility functions with respect to their convexity/concavity by a single parameter v.

With a continuous policy space, by contrast, utility functions cannot necessarily be or-

dered by their convexity/concavity.21 Perhaps motivated by similar considerations, other

studies such as Aragones and Postlewaite (2002) and Gul and Pesendorfer (2009) also use

models with three policy outcomes.

Given a profile of positions (xA, xB) chosen by the candidates, let w(xA, xB) be the

“winner” of the election: Formally, let w(xA, xB) be i if P (xi, x−i) >
1
2
, and A and B each

with probability 1
2

if P (xA, xB) = P (xB, xA) = 1
2
.22 Each candidate i = A,B has a payoff

function that depends largely on whether she is elected but also slightly on the realized

policy:

Ui(xA, xB) = ai · I{i=w(xA,xB)} + εbi(|xw(xA,xB) − x̄i|), (2)

where ai is a positive constant that captures the intensity of preferences for being elected,

ε is a nonnegative constant, and bi(·) is a decreasing function corresponding to policy

preferences, whose argument is the distance between the realized policy and i’s bliss

point, denoted by x̄i.
23 We assume that x̄A = 0 and x̄B = 1. We assume that, for

21A possible approach for analyzing a model with a continuous policy space may be to consider a
parameterized family of simple voter distributions and utility functions. However, even if a Nash equi-
librium exists in such a model, characterizing the equilibria (which we are able to obtain in our discrete
model) appears to be difficult. It is relatively straightforward to check local optimality of an announced
policy by taking first order conditions, but that is not sufficient for establishing global optimality.

22Note that the function w(·) is deterministic unless P (xA, xB) = P (xB , xA) = 1
2 even though the

model involves probabilistic voting. This is not a contradiction because there is a continuum of voters,
which approximates a situation where there are a large number of voters.

23Ii=w(xA,xB) is an indicator function, which takes one if candidate i is the winner of the election and
zero otherwise.
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each i, ε
(
bi(0)− 2bi(

1
2
) + bi(1)

)
< ai. This assumption holds if bi is concave (i.e. bi(

1
2
) ≥

bi(0)+bi(1)
2

) or if ε is sufficiently small. As we formally state in Proposition 4, this assumption

implies that candidates primarily care about the vote share, and if two policy choices give

candidate A (resp. candidate B) the same probability of winning the election, she prefers

the left (resp. the right) policy. In the remainder of the paper, we assume ε > 0 unless

stated otherwise.

As will become clear, this policy preference term is not needed to obtain divergent

equilibria. The sole reason to introduce this term is to rule out the possibility of an

uninteresting multiplicity of equilibria as we will state in footnote 24. We will show that

even though there are multiple equilibria when ε = 0, there is no convergent equilibrium

(1
2
, 1

2
) when divergence is an equilibrium (except for a knife-edge case).

A profile of mixed strategies is a Nash equilibrium if the strategy of each candidate

maximizes her expected utility given the strategy of the other candidate.

Following a common approach in the literature (see Banks and Duggan (2005), for

instance), we define (utilitarian) social welfare of a policy x by

W (x) =
∑
x′∈P

u(|x′ − x|)f(x′).

We say that a (mixed) strategy profile is welfare-maximizing if for all (xA, xB) that

are realized with positive probability under that strategy profile, P (xi, x−i) ≥ 1
2

implies

W (xi) ≥ W (x′) for all x′ ∈ P . That is, every policy position that wins the election with

positive probability maximizes social welfare.

3 Policy Divergence and Policy Convergence

3.1 Illustrative Example: Perfectly Polarized Distribution

This subsection is devoted to the analysis in a particularly simple environment. To this

end, we consider a perfectly polarized distribution, i.e. f
(

1
2

)
= c = 0. That is, f is

a perfectly polarized distribution if it has point masses on 0 and 1, each of which has a

weight of 1
2
. A perfectly polarized distribution emerges in a political situation where one

half of the voters share one bliss point, and the other half share the other bliss point. We

do not regard perfect polarization as realistic. Rather, the results in this subsection help

10



understand the intuition for our main results presented in the next subsection.

Proposition 1. Suppose the voter distribution is perfectly polarized.

1. If the voters’ utility function is convex, then (0, 1) is the unique Nash equilibrium.24

2. Otherwise, (1
2
, 1

2
) is the unique Nash equilibrium.

Taken together, these two parts of the proposition show the uniqueness of Nash equi-

librium for any utility function of voters.

We offer intuition of Proposition 1. Suppose that candidates A and B are at 0 and 1,

respectively, and consider the incentive of candidate A. Candidate A experiences a gain

and loss by moving from 0 to 1
2
: she receives more votes from the voters at 1, while she

loses votes from the voters at 0. If voters have a convex utility function, they care more

about policy changes when the proposed policy is close to their bliss points than when it

is far. If candidate A moves toward the middle (1
2
), then the amount of votes she loses

from the voters close to her (i.e. the voters at 0) is greater than the amount she gains from

the voters far away (i.e. the voters at 1). A symmetric argument holds for candidate B.

Thus divergence is an equilibrium when voters have convex preferences. On the contrary,

voters with concave utility functions care more about policy changes when the policy is

far from their bliss points. Thus candidates have incentives to position at the middle, so

that they can win reasonably many votes from both sides of the distribution of voters.

Note that the prediction does not rely on the specification of σ as long as our assump-

tions are satisfied, so the result is robust with respect to the choice of this function.

Voters’ utility function is often assumed to be concave in the literature, and policy

convergence has been shown under that assumption (see Banks and Duggan (2005)).

Proposition 1 demonstrates the importance of the concavity assumption for such results

by showing that both policy convergence and divergence can occur depending on the

utility functions. Note that Proposition 1 provides a necessary and sufficient condition

for policy convergence, which is uncommon in the literature.

Proposition 2. Suppose the voter distribution is perfectly polarized. Then the (unique)

Nash equilibrium is welfare-maximizing.

24For the uniqueness of the equilibrium, we utilize the assumption that candidates have preferences
over policies (ε > 0). The strategy profile (1, 0), for example, is not a Nash equilibrium because candidate
A (resp. B) has an incentive to move to policy 0 (resp. 1) as long as ε > 0.
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As seen in Proposition 1, we may or may not observe policy divergence in equilibrium,

depending on voters’ utility function. However, Proposition 2 demonstrates that the social

optimum is attained in equilibrium, whether or not the divergence occurs.

Note that Proposition 2 enables analysts to evaluate social welfare without reference to

primitives of the model except voter distributions. This is potentially useful, as analysts

can make welfare judgments without much information, such as realized policy positions

or utility functions.

In the next subsection, we consider more general voter distributions than the perfectly

polarized distribution. It will turn out that many, though not all, of the insights in this

section carry over to those general cases.

3.2 Main Results

In this subsection, we investigate how equilibrium policies are affected by voters’ utility

function, randomness added to it, and polarization of the voter distribution.

Before presenting the main results, we offer two basic results that prove useful in sub-

sequent analysis. First, the following result allows us to focus on pure strategy equilibria

without loss of generality.

Proposition 3. Each candidate uses a pure strategy in any Nash equilibrium.

Before presenting the second result, recall that we assume ε(bi(0)−2bi(
1
2
)+bi(1)) < ai

for each i. As we mentioned, this condition holds whenever ε > 0 is sufficiently small.

This distinguishes our model with most existing ones with policy-motivated candidates,

in that effectively we only assume lexicographically weaker preferences for policies than

politicians’ primary interests in winning the election. In that sense the departure of our

setup from the standard Hotelling model is kept fairly small. Indeed, it is clear from the

definition that any strict Nash equilibrium in the game with ε = 0 is a Nash equilibrium of

the game with sufficiently small ε > 0, so our requirement of candidates’ policy preferences

is mild. Even so, interestingly this policy preference term does rule out some equilibria

and enables us to obtain a unique prediction under certain circumstances as we will see

shortly. In fact, the following proposition shows that Nash equilibria with ε > 0 are

equivalent to a certain refinement of Nash equilibria of the game with ε = 0.
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Proposition 4. (x∗A, x
∗
B) is a Nash equilibrium of the game with ε > 0 if and only if it is

a Nash equilibrium of the game with ε = 0 with the additional property that, for each i,

there exists no x′i such that P (x′i, x
∗
−i) = P (x∗i , x

∗
−i) and |x′i − x̄i| < |x∗i − x̄i|.

The proposition shows that analyzing a game with ε > 0 is equivalent to analyzing a

game with ε = 0 as long as we analyze a (slight) refinement of Nash equilibrium, in the

sense that we focus on Nash equilibria in which each candidate i announces the closest

policy to x̄i among the set of policies that gives the highest vote share to her. In this

sense, the model with policy preferences (ε > 0) departs from the standard model of purely

office-motivated candidates (ε = 0) in a fairly small manner. Indeed, all our results except

for uniqueness of equilibrium hold also with ε = 0. Thus, even if we stick to the model

with politicians whose only objective is to maximize vote share, we still obtain policy

divergence as a Nash equilibrium under a wide range of environments.

Now we are ready to present our main theorem. The theorem provides a necessary

and sufficient condition for the equilibrium to exhibit policy divergence/convergence, in

terms of convexity of voter utility and voter polarization. Recall that c denotes the degree

of centralization of the voter distribution. For any σ, let

c̄(v, σ) =

(
2 +

σ(1
2

+ v) + σ(1
2
− v)− 1

σ(1
2

+ v)− σ(1
2
− v)

)−1

for any v > 0, and c̄(0, σ) = 0.25 For instance, with the logistic function σ̂λ, this expression

can be written as c̄(v, σ̂λ) =
(

2 + e
1
2λ−e−

1
2λ

evλ−e−vλ

)−1

for any v > 0, and c̄(0, σ̂λ) = 0 (Figure 1

just before Theorem 2 plots c̄(v, σ̂λ) versus v for various values of λ).

Theorem 1. 1. If voters’ utility function is convex and c ≤ c̄(v, σ), then (0, 1) is the

unique Nash equilibrium.

2. Otherwise, (1
2
, 1

2
) is the unique Nash equilibrium.

The basic intuition of this theorem can be explained in an analogous manner as we

did for Proposition 1. Suppose that candidates A and B are at 0 and 1, respectively, and

consider the incentive of candidate A. Candidate A experiences a gain and loss by moving

from 0 to 1
2
: the gain from obtaining more votes from the voters at 1

2
and 1, and the loss

from obtaining less votes from the voters at 0. If voters’ utility function is sufficiently

25c̄(0, σ) = limv↘0 c̄(v, σ) by Proposition 5 below.

13



convex, they care more about policy changes when the proposed policy is close to their

bliss points than when it is far.26 If candidate A moves toward the middle (1
2
), then the

amount of votes she loses from the voters close to her (i.e. the voters at 0) is greater

than the amount she gains from the voters far away (i.e. the voters at 1). A symmetric

argument holds for candidate B. Thus divergence is an equilibrium when voters’ utility

function is sufficiently convex. The other cases can be similarly explained.

Further intuition can be explained as follows: Suppose v > 0 and that (0, 1) is a Nash

equilibrium for some c = c′. Then, for any c < c′, we should expect it to be a Nash

equilibium. Intuitively speaking, this is because, since more voters are at the “extreme

positions” (i.e. 0 or 1) when c < c′ than when c = c′, the convexity of voters’ utility

function implies (with the logic explained in the previous subsection) more incentive for

the candidates to situate themselves at extreme positions.27 Conversely, if (1
2
, 1

2
) is a

Nash equilibrium for some c = c′′, then for any c > c′′ we should expect it to be a Nash

equilibrium. This is because, since more voters are at the “middle points” when c > c′′

than when c = c′′, the incentive to take “extreme points” (implied by the convexity of

u) decreases, so candidates still want to take the middle position. In other words, there

exist thresholds, c∗(v, σ) and c∗(v, σ), for divergence and convergence, respectively, to be

equilibria.

While we have explained the intuition for Theorem 1, note that there is more content

in this theorem: (i) there exists a unique Nash equilibrium for each c, (ii) thresholds

c∗(v, σ) and c∗(v, σ) are identical, and (iii) we can analytically solve for the threshold

c̄(v, σ). (iii) is useful since it enables us to conduct simple comparative statics, as shown

in the next proposition.

We will investigate comparative statics of the threshold c̄(v, σ) with respect to various

parameters of the model. To do so, first we introduce some concepts. Given σ and ρ > 0,

define the ρ-transformation of σ by σρ(t) = σ(ρt) for all t.28 If ρ > 1 then a voter’s

behavior is “less random” under σρ than under σ in the sense that it is closer to the

deterministic voting as assumed in the Hotelling (1929) model. We say that the function

26The cases for v ≤ 0 is standard in the literature. See, for example, Banks and Duggan (2005).
27We point out that, given a convex voter utility function, the existence of small enough a value c such

that policy divergence is an equilibrium under c is not surprising given Proposition 1. Nontrivial contents
of this theorem are explained shortly.

28Parameter ρ represents the weight placed on the deterministic utility relative to the random utility
shock (which is normalized to one). That is, we change a voter’s utility from u(|x− xi|)− u(|x− xj |) + ξ
to ρ[u(|x− xi|)− u(|x− xj |)] + ξ while the distributions of ξ are kept identical in both cases.
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σ satisfies the increasing average-marginal ratio property if it is differentiable and

σ(t)−σ(0)
tσ′(t)

is strictly increasing for all t ≥ 0. To interpret this property, note that σ(t)−σ(0)
t

is

the average rate of increase in the probability of voting for the closer candidate between

0 and t, while σ′(t) is the marginal rate of increase in the probability of voting for the

closer candidate at t. The property requires that the ratio of these two rates be increasing

in t. While the condition excludes some functions, many functions that are of interest,

such as those used in logit and probit models, satisfy it (we prove this fact in Appendix

A.7). With the above definitions, we are ready to present comparative statics results of

the threshold c̄(v, σ) with respect to various parameters of the model.

Proposition 5. 1. c̄(v, σ) is strictly increasing in v, limv↘0 c̄(v, σ) = 0, and limv↗ 1
2
c̄(v, σ) =

1
3

for any σ.

2. (a) If σ satisfies the increasing average-marginal ratio property, then c̄(v, σρ) is

strictly decreasing in ρ > 0 for any v > 0.

(b) c̄(v, σ) ≤ 2v
4v+1

for any v, σ. If σ is differentiable, then limρ↘0 c̄(v, σ
ρ) = 2v

4v+1
.

(c) If sequence {σn}∞n=1 converges pointwise to σ∗ where σ∗(t) = 1 for all t > 0,

then limn→∞ c̄(v, σn) = 0.

Part 1 of the Proposition shows that a higher degree of convexity of voters’ utility

function makes a divergent equilibrium possible even when the voter distribution is more

concentrated at the median. Moreover, as voters’ utility function approaches a linear

function (i.e., v → 0), the threshold c̄(v, σ) needed for a divergent equilibrium approaches

zero, and when the utility function becomes linear, the divergent equilibrium persists

only under the perfectly polarized distribution, c = 0. As convexity becomes very large

(v → 1
2
), the divergent equilibrium becomes prevalent and the threshold approaches

c = 1/3, corresponding to the uniform distribution.

Part 2 of the proposition shows that the more strongly voters care about policies

relative to idiosyncratic random preferences, the more polarization is needed for divergent

equilibria. Furthermore, as the degree of randomness becomes much more significant

than voters’ deterministic preference, the threshold needed for a divergent equilibrium

approaches a limit that depends on the degree of convexity of the preference (v). As

the randomness becomes negligible relative to the deterministic preference of the voters,

the divergence becomes difficult and the threshold approaches zero. This result makes
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intuitive sense: In the limit as ρ approaches infinity, policy divergence is not an equilibrium

for any c > 0, because a candidate at 0, say, does not lose any votes from voters at 0 by

moving to 1
2
, just as in the standard Hotelling-Downs model.

Part 2c allows for a general sequence of functions that converges pointwise to the

deterministic case. In particular, consider ρ-transformations of a function σ. Assume

that limt→∞ σ(t) = 1, that is, a voter’s choice probability for a candidate approaches

one as the utility of the candidate’s position becomes infinitely larger than her oppo-

nent’s.29 Then, since limρ→∞ σ
ρ(t) = limρ→∞ σ(ρt) = 1 for any t > 0, Part 2c implies

that limρ→∞ c̄(v, σ
ρ) = 0. In words, the threshold converges to zero in the class of ρ-

transformations as ρ becomes infinitely large.

Note that, for any σ, policy divergence occurs under voter distributions that have cen-

tralizations close to (but less than) 1
3

as long as the utility function is sufficiently convex,

while even a very large degree of randomness does not necessarily imply policy divergence

under such a voter distribution. This analysis shows that sufficient convexity, rather than

sufficient randomness, is essential for divergence in equilibrium: Note that only a very

small amount of randomness is actually needed. This fact might appear contradictory to

the “median voter theorem” as predicted by the standard Hotelling-Downs model, where

there is no randomness in voters’ utility. However there is no inconsistency. As we have

seen in Part 2c, once we fix the value of v < 1
2
, c̄(v, σn) approaches 0 as the randomness

vanishes (σn → σ∗).

We plot in Figure 1 the value of c̄(v, σ) with respect to v under the logit specification

(i.e. σ = σ̂λ), for four values of λ: 0.0001, 2, 5, 10, and 15. The graph illustrates that

more convexity and randomness allow policy divergence under distributions with more

centralization. Notice that, for any fixed v, c̄(v, σ̂λ) approaches zero as λ increases.

The next result shows that the divergent equilibrium is welfare-maximizing.30

Theorem 2. If (0, 1) is a Nash equilibrium, then it is welfare-maximizing.

In Proposition 2 we showed that a Nash equilibrium, whatever it is, is welfare-

29This property is regularly assumed in discrete choice theory. For instance, the functions used in logit
and probit models for any specification of the parameter satisfy this condition.

30Recall that the social welfare used in this paper is utilitarian, that is, the average of voters’ utilities.
While this may not be the only reasonable measure of welfare, we use it to compare our result to those
in the existing literature using this concept (such as Banks and Duggan 2005).

16



Figure 1: Relationship between v and c̄(v, σ̂λ) for different values of λ.

maximizing, when the voter distribution is perfectly polarized. On the other hand, the

above theorem applies only when the divergent policy profile is a Nash equilibrium. Ac-

tually, the converse of the theorem is not true: Even if (0, 1) is welfare-maximizing, it is

not necessarily a Nash equilibrium. Also, in such a case the only equilibrium is (1
2
, 1

2
).

Hence, in our model with convex utility function, the convergent equilibrium is not nec-

essarily welfare-maximizing.31 This conclusion contrasts with the standard results in the

literature (see, for example, Banks and Duggan (2005)) that the convergent equilibrium

is welfare-maximizing.

The key to Theorem 2 is that the voting probability is sensitive to the utility difference

when the latter is small in absolute term (as σ is weakly concave in it). This implies that

when the policy profile is (0, 1), candidate A can increase the votes from the voters at 1
2

substantially by moving to 1
2
, while these voters experience only a mild increase in payoffs.

Therefore if (0, 1) is an equilibrium, then A’s gain in votes from moving to 1
2

is smaller

than her loss, so the welfare gain for voters is outweighed by the loss as well, implying

that (0, 1) is also welfare-maximizing. An analogous argument implies that A sometimes

gains by moving to 1
2

even if that decreases the welfare, explaining why there exist cases

31An example is as follows: Consider the logit case with λ = 1, c = 0.248, and v = 1
4 . Then, it can be

shown that c = 0.248 > 0.246 · · · = c̄( 1
4 , 1), so that ( 1

2 ,
1
2 ) is the unique Nash equilibrium, while it is not

welfare-maximizing, since W (0) = W (1) = 0.438 > 0.436 = W ( 1
2 ).
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in which a convergent equilibrium is not welfare-maximizing. Being consistent with this

intuition, when voters are perfectly polarized (c = 0) the convergent equilibrium is always

welfare-maximizing (Proposition 2).

4 Multi-Dimensional Policy Space

The primary purpose of this paper is to study how positions of political candidates are

determined in a strategic situation and how positions are related to the nature of the

political issues. In this section we propose a model in which there is more than one policy

issue. We will see that political candidates diverge on some issues and converge on others

in equilibrium, and that issues with divergent policy positions are precisely those on which

voters have a convex utility function.

A continuum of voters are distributed on P := {0, 1
2
, 1}n according to a probability

mass function f on P . The interpretation is that each dimension of the policy space

corresponds to one policy issue. Two candidates A and B with bliss points (x̄A, x̄B) =

((0, . . . , 0), (1, . . . , 1)) simultaneously determine their positions, x ∈ P and y ∈ P . The

payoff of each candidate i is given by equation (2) as before, except that the vote share

function (1) is replaced by its multi-dimensional generalization,

Pi(x, y) =
∑
x′∈P

σ

(
n∑
k=1

δkuk(|x′k − xk|)−
n∑
k=1

δkuk(|x′k − yk|)

)
f(x′)

where
∑n

k=1 δkuk(·) represents voters’ utility function (and, as before, σ : R → [0, 1]

is a strictly increasing function that satisfies σ(t) + σ(−t) = 1 for any t ∈ (−∞,∞)).

Implicit in this definition is the assumption that voters’ utility function is additive across

different policy issues. However, we let the function σ apply to the sum of these terms,

as opposed to taking the sum of σ’s. This means that different issues are not considered

to be completely independent. For each k, we assume that uk is a decreasing function

satisfying uk(0) = 1 and uk(1) = 0, and δk > 0. Parameter δk represents the relative

importance of the k’th policy issue for voters.

To obtain a sharp prediction, we assume that the distribution of voters f : P → [0, 1]

is perfectly polarized, that is, supp(f) ⊆ {0, 1}n and f(x) = f(x′) for all x, x′ ∈ P with

x′k = 1− xk for all k = 1, . . . , n.

The concept of a perfectly polarized distribution is a generalization of the correspond-
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ing notion in Subsection 3.1. The class of perfectly polarized distributions subsumes

as a special case a distribution that assigns a mass of 1
2

to (0, . . . , 0) and a mass of 1
2

to (1, . . . , 1). Also included in this class is a distribution where each vertex of the n-

dimensional unit cube {0, 1}n has an identical weight and all other points have weight

zero. However, the notion of perfectly polarized distribution is more general: For example,

in the 2-dimensional policy space, the distribution in which fraction 1
3

of the voters are

situated at (0, 0) and (1, 1) each, and 1
6

at (0, 1) and (1, 0) each, is a perfectly polarized

distribution.

We first provide a characterization of a Nash equilibrium, and then give a welfare

analysis.

Theorem 3. Suppose the voter distribution is perfectly polarized. There exists a unique

Nash equilibrium, (x∗A, x
∗
B) = ((x∗A1, . . . , x

∗
An), (x∗B1, . . . , x

∗
Bn)), which is given by

(x∗Ak, x
∗
Bk) =

(0, 1) if uk is convex,(
1
2
, 1

2

)
otherwise.

The result shows that candidates’ positions have a clear dichotomy. More specifically,

candidates diverge on “convex issues,” that is, issues for which voters’ utility function is

convex, while they converge on “concave issues.” The case where n = 1 corresponds to

Proposition 1.

As in Subsection 3.1, we can show that a Nash equilibrium is welfare-maximizing

whether or not it is convergent. We follow essentially the same analysis as before. Ex-

tending the definition before, social welfare of a policy x is

W (x) =
∑
x′∈P

n∑
k=1

δkuk(|x′k − xk|)f(x′),

where x = (x1, . . . , xn) and x′ = (x′1, . . . , x
′
n).

Given this definition of W (x), we say that a (mixed) strategy profile is welfare-

maximizing if for all (xA, xB) that realizes with positive probability under that strategy

profile, P (xi, x−i) ≥ 1
2

implies W (xi) ≥ W (x′) for all x′ ∈ P . That is, every policy

position that wins the election with positive probability maximizes social welfare.

Proposition 6. Suppose the voter distribution is perfectly polarized. Then the (unique)

Nash equilibrium is welfare-maximizing.
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The proof is omitted, as it is a relatively easy adaptation of the proof of Proposition

2.

We have seen in Proposition 2 that the unique Nash equilibrium is welfare-maximizing

in the model with a uni-dimensional policy space. The above proposition generalizes this

result: The unique Nash equilibrium is welfare-maximizing even in a multi-dimensional

policy space.

Finally, by an inspection of the proof of Theorem 3, it can be seen that the conclusions

of this section hold for voter distributions that are not perfectly polarized, as long as uk

for each k is either strictly convex or strictly concave and the voter distribution is close

enough to a perfectly polarized distribution.32

5 Concluding Remarks

We considered a probabilistic voting model with utility functions that are not necessarily

concave. As we have discussed in the Introduction, convexity seems a natural assumption

when the relevant policy issues involve moral or religious contents. In our model, when

voters are more polarized than in the uniform distribution, we showed that there is a con-

vexity threshold of voters’ utility function (i) below which policy convergence is a unique

equilibrium, and (ii) above which policy divergence is a unique equilibrium. As voters

become more polarized, divergent policies prevail in equilibrium for a wider range of voter

utility functions. Moreover, social welfare is maximized in each divergent equilibrium,

but not necessarily in every convergent equilibrium. When there is more than one policy

issue and the voter distribution is perfectly polarized, the candidates’ equilibrium policies

diverge on issues for which utility functions are convex and converge on issues for which

utility functions are concave.

In this paper, we assumed that voting is not costly and no voters abstain. While this

assumption is widely adopted in many models including the original ones by Hotelling

and Downs (thus making our results comparable to those in the literature), certainly it

is restrictive. However, our results hold more generally. Kamada and Kojima (2013)

prove an equivalence result between the probabilistic voting model without abstention

32More specifically, we say that a voter distribution f is η-close to a perfectly polarized distribution if
f(x) = f(x′) for all x, x′ ∈ P and f(x) < η for every x /∈ {0, 1}n. For any voter utility function such
that uk for each k is either strictly convex or strictly concave, the conclusions of this section hold for any
voter distribution that is η-close to a perfectly polarized distribution with any sufficiently small η.
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and a costly voting model in which voters abstain when a randomly drawn cost of voting

exceeds the benefit from voting. More specifically, in two-candidate elections, given any

probabilistic voting model, there exists a costly voting model that generates winning

probabilities identical to those in the former model for any policy announcements, and

vice versa. Thus all the results established in this paper, except for those about social

welfare, hold in a corresponding costly voting model that allows for abstention as well,

providing robustness of our main finding to model specifications.

Let us conclude the paper by suggesting several future research directions. First,

it may be interesting to empirically identify on which policy issues voters have convex

and concave utility functions, respectively. The second issue is a generalization to policy

spaces with more than three points. As illustrated in Section 2, our three-point model is

advantageous because it is tractable and allows us to unambiguously define the degree of

convexity of any voter function. Still, extending our results to more general cases may

prove useful, for example, to understand the effect of convexity or polarization on the

degree of policy divergence. This topic is left for future research: we conjecture that

the basic logic underlying policy divergence would extend.33 Finally, investigating the

implications of various utility functions would be a fruitful approach more generally. Van

Weelden (2013) shows that sufficiently concave utility functions can lead to policy diver-

gence in a dynamic setting, and Van Weelden (2011) investigates relationship between

policy divergence and the degree of concavity of voter utility functions. Convex utility

functions have been usefully employed to study ambiguity in elections (Shepsle, 1972;

Aragones and Postlewaite, 2002). More recently, studies have shown that convex util-

ity functions imply qualitatively different results from concave utility functions in other

contexts, too. For example, Kamada and Kandori (2009) consider a model of a dynamic

process in which candidates revise their policies over time until the time of election and

show that if candidates have convex utility functions then policies diverge more than in

the case with concave utility functions. We expect more studies will blossom from this

paper and the idea of convex utility functions more generally.

33Formally generalizing our results is difficult, however. In continuous policy space, for instance, even
the existence of a Nash equilibrium is not guaranteed. Even if one exists, a characterization of the
equilibria (which we obtain in our model) is nontrivial. It is relatively easy to check local optimality of
an announced position by taking first order conditions, but that is not sufficient for global optimality.

21



A Appendix

Propositions 1 and 2 are proven in Sections A.3 and A.5, respectively. We begin by

proving Proposition 3.

A.1 Proof of Proposition 3

Proof. Let ∆(P) be the set of a candidate’s mixed strategies, and for candidate i and any

αi, α−i ∈ ∆(P), let

Ui(αi, α−i) :=
∑

(xi,x−i)∈P2

αi(xi) · α−i(x−i) · Ui(xi, x−i),

where α−i is the mixed strategy of the candidate different from i. A profile of mixed

strategies (αA, αB) is a Nash equilibrium if αi ∈ arg maxα′i∈∆(P) Ui(α
′
i, α−i) for each i =

A,B.

Consider a Nash equilibrium (αA, αB). We first show that αA(1) = 0. First note that,

by symmetry, A’s winning probability is the same when she plays a pure strategy xA = 0

as when she plays a pure strategy xA = 1. Suppose first that the probability that A

wins the election at xA = 1 is zero. By symmetry, this occurs only when αB(1
2
) = 1 and

P (1, 1
2
) < 1

2
. In this case, by playing xA = 1, A’s winning probability is 0, while the

realized policy is 1
2

with probability 1. But by playing xA = 1
2
, A’s winning probability

is 1
2
(> 0), while the realized policy is, again, 1

2
with probability 1. Thus in this case A

cannot put a positive probability on xA = 1 in a Nash equilibrium.

Consider next the other case, i.e. the case in which the probability that A wins the

election at xA = 1 is positive. Notice again that, by symmetry, the winning probability

is the same when A plays xA = 0 as when she plays xA = 1. Since whenever she wins

the realized policy is closer to her bliss point when xA = 0 than when xA = 1, pure

strategy xA = 0 gives a strictly higher payoff to candidate A than pure strategy xA = 1

does. Thus, again in this case, candidate A puts probability zero on xA = 1 in any Nash

equilibrium. Therefore, we conclude that αA(1) = 0. A symmetric argument shows that

αB(0) = 0.

In order to prove the proposition, now consider two cases. Suppose first that P (0, 1
2
) ≥

1
2
. Given any realized action of B, when xA = 0, A’s winning probability is strictly positive

and weakly larger than when xA = 1
2
. Also, whenever A wins the election, the realized
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policy is strictly closer to A’s bliss point when xA = 0 than when xA = 1
2
, and whenever

A loses, it is the same when xA = 0 as when xA = 1
2
. Hence under this assumption

candidate A takes a pure strategy xA = 0 in the best response.

Next, suppose that P (0, 1
2
) < 1

2
. Then, candidate A’s expected payoff from xA = 0 is:

αB(1)

2
aA + ε

(
αB(1)

2
bA(0) + (1− αB(1))bA(

1

2
) +

αB(1)

2
bA(1)

)
.

On the other hand, her expected payoff from xA = 1
2

is:

1 + αB(1)

2
aA + εbA(

1

2
).

We show that the latter is strictly larger than the former. To see this, subtract the former

from the latter:

(
1 + αB(1)

2
aA + εbA(

1

2
)

)
−
(
αB(1)

2
aA + ε

(
αB(1)

2
bA(0) + (1− αB(1))bA(

1

2
) +

αB(1)

2
bA(1)

))
=

1

2

(
aA − αB(1) · ε

(
bA(0)− 2bA(

1

2
) + bA(1)

))
. (3)

Expression (3) is obviously strictly positive if bA(0)− 2bA(1
2
) + bA(1) is negative. Other-

wise, (3) is the smallest if αB(1) = 1, in which case it is strictly positive because of the

assumption that ε
(
bA(0)− 2bA(1

2
) + bA(1)

)
< aA. This shows that xA = 1

2
is the unique

best response. Hence candidate A takes a pure strategy in a Nash equilibrium.

A symmetric argument shows that candidate B uses a pure strategy in any best

response, completing the proof.

A.2 Proof of Proposition 4

Proof. We show the “Only if” direction first and then the “If” direction.

“Only if” direction. Let (x∗A, x
∗
B) be a pure strategy Nash equilibrium of the game

with ε > 0 (by Proposition 3, we can focus on pure strategy Nash equilibria without loss

of generality). We begin by showing that each candidate obtains the vote share of 1
2
.

Suppose the contrary, i.e. that some candidate i gets a vote share strictly smaller than

1
2
. Then, by deviating from x∗i to xi = x∗−i, candidate i can strictly increase the winning

probability, while this deviation does not change the realized policy (namely x∗−i). This
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contradicts the assumption that (x∗A, x
∗
B) is a Nash equilibrium. Hence in (x∗A, x

∗
B), each

candidate gets the vote share of 1
2
. Thus, in particular, the winninng probability in

(x∗A, x
∗
B) is 1

2
.

From the proof of Proposition 3, x∗A 6= 1 and x∗B 6= 0. Hence there are four cases: (i)

(x∗A, x
∗
B) = (0, 1

2
), (ii) (x∗A, x

∗
B) = (0, 1), (iii) (x∗A, x

∗
B) = (1

2
, 1

2
), and (iv) (x∗A, x

∗
B) = (1

2
, 1).

In each case, we will suppose that candidate A has an incentive to deviate from (x∗A, x
∗
B)

in the game with ε = 0, and derive contradictions. By symmetry this is sufficient to show

that (x∗A, x
∗
B) is a Nash equilibrium in the game with ε = 0.

First, consider case (i). If A has an incentive to deviate in the game with ε = 0, xA = 1
2

has to give a strictly higher winning probability than x∗A. But it would give A the winning

probability of 1
2

by symmetry, which is the same as when she takes x∗A, a contradiction.

Second, consider case (ii). If A has an incentive to deviate in the game with ε = 0,

xA = 1
2

has to give a strictly higher winning probability than x∗A (1 instead of 1
2
). But then

by assumption ε
(
bi(0)− 2bi(

1
2
) + bi(1)

)
< ai, we have ai + εbi(

1
2
) > ai

2
+ ε

2
(bi(0) + bi(1)),

which implies that in the game with ε > 0, xA = 1
2

gives a higher payoff to candidate A

than x∗A does. This contradicts the assumption that (x∗A, x
∗
B) is a Nash equilibrium in the

game with ε > 0.

Third, consider case (iii). If A has an incentive to deviate in the game with ε = 0,

xA = 0 has to give a strictly higher winning probability than x∗A. But if it were the case,

then in the game with ε > 0, the deviation from x∗A to 0 gives candidate A a higher

winning probability (1 instead of 1
2
) as well as the realized policy closer to her bliss point

(0 instead of 1
2
). Thus candidate A would be better off by taking 0 instead of x∗A, which

contradicts the assumption that (x∗A, x
∗
B) is a Nash equilibrium in the game with ε > 0.

Finally, consider case (iv). If A has an incentive to deviate in the game with ε = 0,

xA = 0 has to give a strictly higher winning probability than x∗A. But it would give A

the winning probability of 1
2

by symmetry, which is the same as when she takes x∗A, a

contradiction.

To conclude, we have shown that whenever (x∗A, x
∗
B) is a Nash equilibrium in the game

with ε > 0, it is also a Nash equilibrium in the game with ε = 0.

Now we verify that in (x∗A, x
∗
B) candidate A does not have another choice x′A such that

|x′A − x̄A| < |x∗A − x̄A| that gives her the same vote share. If such x′i exists, then it is

immediate that the payoff from x∗A is strictly less than the one from x′A in the game with

ε > 0, since x′A is closer to A’s bliss point than x∗A. This contradicts the assumption that
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(x∗A, x
∗
B) is a Nash equilibrium in the game with ε > 0.

“If” direction. Let (x∗A, x
∗
B) be a Nash equilibrium of the game with ε = 0 with the

property that, for each i = A,B, candidate i has no other choice of policy x′i such that

P (x′i, x
∗
−i) = P (x∗i , x

∗
−i) and |x′i − x̄i| < |x∗i − x̄i|. This implies that the vote share at x∗i

is 1
2
, and there is no other choice x′i that gives strictly higher vote share. Suppose that

(x∗A, x
∗
B) is not a Nash equilibrium of the game with ε > 0. In the game with ε > 0,

the expected payoff at x∗i is ai
2

+ ε
2

(
bi(|x∗i − x̄i|) + bi(|x∗−i − x̄i|)

)
. The expected payoff at

another choice x′i is ai
2

+ ε
2

(
bi(|x′i − x̄i|) + bi(|x∗−i − x̄i|)

)
if x′i gives the vote share of 1

2
,

and it is εbi(|x∗−i − x̄i|) if x′i gives the vote share strictly less than 1
2
.

In the former case, to compare

ai
2

+
ε

2

(
bi(|x∗i − x̄i|) + bi(|x∗−i − x̄i|)

)
and

ai
2

+
ε

2

(
bi(|x′i − x̄i|) + bi(|x∗−i − x̄i|)

)
,

note that x∗i and x′i give the same vote share. This implies, by assumption, that x∗i is

weakly closer to x̄i than x′i is. This implies that bi(|x∗i − x̄i|) ≥ bi(|x′i − x̄i|). Hence

ai
2

+
ε

2

(
bi(|x∗i − x̄i|) + bi(|x∗−i − x̄i|)

)
≥ ai

2
+
ε

2

(
bi(|x′i − x̄i|) + bi(|x∗−i − x̄i|)

)
. (4)

In the latter case, first note that x∗A 6= 1, x∗B 6= 0 by the proof of Proposition 3, so

|x∗i − x̄i| ≤ |x∗−i − x̄i|. Therefore

εbi(|x∗−i − x̄i|) ≤
ε

2
(bi(|x∗A − x̄i|) + bi(|x∗B − x̄i|)

<
ai
2

+
ε

2
(bi(|x∗A − x̄i|) + bi(|x∗B − x̄i|). (5)

Conclusions (4) and (5) of these two cases show that candidate i does not have an

incentive to deviate from (x∗A, x
∗
B) in the game with ε > 0. This completes the proof.

A.3 Proofs of Proposition 1 and Theorem 1

Since Proposition 1 is a special case of Theorem 1 when c = 0, we prove Theorem 1.
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Proof. First, we show that if there exists a Nash equilibrium, then it must be unique. To

see this, let (x∗A, x
∗
B) and (x∗∗A , x

∗∗
B ) be Nash equilibria. Since each candidate obtains the

vote share of 1
2

in any equilibrium as shown in the proof of Proposition 4, we have

1

2
= P (x∗A, x

∗
B) ≥ P (x∗∗A , x

∗
B) = 1− P (x∗B, x

∗∗
A ) ≥ 1− P (x∗∗B , x

∗∗
A ) = P (x∗∗A , x

∗∗
B ) =

1

2
.

Hence, it must be the case that P (x∗A, x
∗
B) = P (x∗∗A , x

∗
B). This equation together with the

condition that (x∗A, x
∗
B) is a Nash equilibrium implies that |x∗A − x̄A| ≤ |x∗∗A − x̄A|. By a

symmetric argument, we obtain |x∗A−x̄A| ≥ |x∗∗A−x̄A|Hence, we have |x∗A−x̄A| = |x∗∗A−x̄A|.

Since x̄A = 0, we have x∗A = x∗∗A . We can apply an analogous argument to show that

x∗B = x∗∗B . Therefore, we conclude that if there exists a Nash equilibrium, then it must be

unique.

Part 1. We will show that (x∗A, x
∗
B) = (0, 1) is a Nash equilibrium (and hence the unique

Nash equilibrium) if v ≥ 0 and c ≤ c̄(v, λ).

By Proposition 4, the assumption (x̄A, x̄B) = (0, 1), and symmetry, (0, 1) is a Nash

equilibrium if and only if the vote share of candidate B is at most 1
2

when she chooses

position 1
2

while candidate A chooses 0. This condition is equivalent to:

P (
1

2
, 0) ≤ 1

2

⇐⇒ 1− c
2
· σ(u(

1

2
)− u(0)) + c · σ(u(0)− u(

1

2
)) +

1− c
2
· σ(u(

1

2
)− u(1)) ≤ 1

2

⇐⇒ 1− c
2
· σ(−(

1

2
+ v)) + c · σ(

1

2
+ v) +

1− c
2
· σ(

1

2
− v) ≤ 1

2

⇐⇒ 1− c
2

(
1− σ(

1

2
+ v)

)
+ c · σ(

1

2
+ v) +

1− c
2
· σ(

1

2
− v) ≤ 1

2

⇐⇒ c

(
−1

2

(
1− σ(

1

2
+ v)

)
+ σ(

1

2
+ v)− 1

2
σ(

1

2
− v)

)
≤ 1

2
− 1

2

(
1− σ(

1

2
+ v)

)
− 1

2
σ(

1

2
− v)

⇐⇒ c

(
−
(

1− σ(
1

2
+ v)

)
+ 2σ(

1

2
+ v)− σ(

1

2
− v)

)
≤ σ(

1

2
+ v)− σ(

1

2
− v)

⇐⇒ c

(
3σ(

1

2
+ v)− σ(

1

2
− v)− 1

)
≤ σ(

1

2
+ v)− σ(

1

2
− v). (6)

If v = 0, then the right-hand side of inequality (6) is clearly equal to zero while the

left-hand side is also equal to zero since 0 ≤ c ≤ c̄(0, σ) = 0, thus showing the statement
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for v = 0. If v > 0, then since

3σ(
1

2
+ v)− σ(

1

2
− v)− 1 > 2σ(

1

2
+ v)− 1 > 2 · 1

2
− 1 = 0,

the inequality (6) is equivalent to

c ≤
σ(1

2
+ v)− σ(1

2
− v)

3σ(1
2

+ v)− σ(1
2
− v)− 1

=

(
2 +

σ(1
2

+ v) + σ(1
2
− v)− 1

σ(1
2

+ v)− σ(1
2
− v)

)−1

= c̄(v, σ), (7)

showing the statement for v > 0.

Part 2. We consider two cases. First, assume v ≥ 0 and c > c̄(v, σ). Then, by inequality

(7), we have P (0, 1
2
) = 1− P (1

2
, 0) < 1

2
. By symmetry, P (1, 1

2
) < 1

2
. Meanwhile, it is clear

that P (1
2
, 1

2
) = 1

2
. Hence, (1

2
, 1

2
) is a Nash equilibrium of the game with ε = 0. Moreover,

it trivially satisfies “the additional property” in the statement of Proposition 4 since

P (x′i,
1
2
) < P (1

2
, 1

2
) for all x′i 6= 1

2
. Therefore, by Proposition 4, we conclude that (1

2
, 1

2
) is

a Nash equilibrium for ε > 0.

Next assume v < 0. From the calculation in Part 1, we have

P (
1

2
, 0) >

1

2

⇐⇒ 1− c
2

(
1− σ(

1

2
+ v)

)
+ cσ(

1

2
+ v) +

1− c
2

σ(
1

2
− v) >

1

2

⇐⇒ 1− c
2

(
1− σ(

1

2
+ v) + σ(

1

2
− v)

)
+ cσ(

1

2
+ v) >

1

2
.

Since σ(1
2

+ v) ≥ σ(0) = 1
2

for any v, the last inequality holds if

1− σ(
1

2
+ v) + σ(

1

2
− v) > 1

⇐⇒ σ(
1

2
− v) > σ(

1

2
+ v)

⇐⇒ v < 0.

Therefore, because v < 0 by assumption, P (0, 1
2
) = 1− P (1

2
, 0) < 1

2
while P (1

2
, 1

2
) = 1

2
by

symmetry. Again, by Proposition 4, (1
2
, 1

2
) is a Nash equilibrium.
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A.4 Proof of Proposition 5

Proof. We show the first part and the second part of the proposition in sequence.

Recall that

c̄(v, σ) =

(
2 +

σ(1
2

+ v) + σ(1
2
− v)− 1

σ(1
2

+ v)− σ(1
2
− v)

)−1

.

Part 1. First, σ(1
2
+v)−σ(1

2
−v) is increasing in v by the assumption that σ is increasing.

Moreover, σ(1
2

+ v) +σ(1
2
− v) is nonincreasing in v by weak concavity of σ in the positive

domain. Thus c̄(v, σ) is strictly increasing in v.

As v → 0, σ(1
2

+ v)− σ(1
2
− v)→ 0. Meanwhile σ(1

2
+ v) + σ(1

2
− v) goes to 2σ(1

2
+ v),

which is strictly larger than 1 as σ(1
2
) > 1

2
. Therefore c̄(v, σ) goes to 0 as v → 0.

Finally, limv↗ 1
2
c̄(v, σ) = c̄(1

2
, σ) = 1

3
.

Part 2. (a) To prove the claim, it suffices to show that

σρ(1
2

+ v) + σρ(1
2
− v)− 1

σρ(1
2

+ v)− σρ(1
2
− v)

=
σ(ρ[1

2
+ v]) + σ(ρ[1

2
− v])− 1

σ(ρ[1
2

+ v])− σ(ρ[1
2
− v])

,

is strictly increasing in ρ > 0. We shall show this holds. To do so, first differentiate the

above expression with respect to ρ, to obtain

(1
2
− v)σ′(ρ[1

2
− v])(2σ(ρ[1

2
+ v])− 1)− (1

2
+ v)σ′(ρ[1

2
+ v])(2σ(ρ[1

2
− v])− 1)(

σ(ρ[1
2

+ v])− σ(ρ[1
2
− v])

)2 .

Since the denominator of this expression is always positive, it suffices to show that the

numerator of this expression is positive. It is positive if and only if

σ(ρ[1
2

+ v])− 1
2

1
2

+ v
· 1

σ′(ρ[1
2

+ v])
>
σ(ρ[1

2
− v])− 1

2
1
2
− v

· 1

σ′(ρ[1
2
− v])

,

which is equivalent to

σ(ρ[1
2

+ v])− 1
2

ρ[1
2

+ v]
· 1

σ′(ρ[1
2

+ v])
>
σ(ρ[1

2
− v])− 1

2

ρ[1
2
− v]

· 1

σ′(ρ[1
2
− v])

.

This inequality holds if
σ(x)− 1

2

x
· 1

σ′(x)
=
σ(x)− 1

2

xσ′(x)

is strictly increasing in x for all x ≥ 0. Noting that σ(0) = 1
2
, this follows from the

increasing average-marginal ratio property, proving the claim.

28



(b) First we show that c̄(v, σ) ≤ 2v
4v+1

. It suffices to show that

σ(1
2

+ v) + σ(1
2
− v)− 1

σ(1
2

+ v)− σ(1
2
− v)

≥ 1

2v
. (8)

To see this, note that the weak concavity of σ for the positive domain implies that

σ(1
2
− v)− 1

2
1
2
− v

≥
σ(1

2
+ v)− 1

2
1
2

+ v
.

This is equivalent to

(
1

2
+ v)(σ(

1

2
− v)− 1

2
) ≥ (

1

2
− v)(σ(

1

2
+ v)− 1

2
)

⇐⇒ v(σ(
1

2
+ v) + σ(

1

2
− v)− 1) ≥ 1

2
(σ(

1

2
+ v)− σ(

1

2
− v))

⇐⇒
σ(1

2
+ v) + σ(1

2
− v)− 1

σ(1
2

+ v)− σ(1
2
− v)

≥ 1

2v
, (9)

proving the claim.

Now we show that limρ↘0 c̄(v, σ) = 2v
4v+1

, when σ is differentiable. Since σρ(x) = σ(ρx),

we have that

σρ(1
2

+ v) + σρ(1
2
− v)− 1

σρ(1
2

+ v)− σρ(1
2
− v)

=
σ(ρ[1

2
+ v]) + σ(ρ[1

2
− v])− 1

σ(ρ[1
2

+ v])− σ(ρ[1
2
− v])

,

and both the numerator and the denominator of the right hand side goes to zero as ρ→ 0.

By this fact and the differentiability of σ, we apply the L’Hopital’s theorem (differentiating

with respect to ρ) to obtain

lim
ρ→0

σ(ρ[1
2

+ v]) + σ(ρ[1
2
− v])− 1

σ(ρ[1
2

+ v])− σ(ρ[1
2
− v])

= lim
ρ→0

(1
2

+ v)σ′(ρ[1
2

+ v]) + (1
2
− v)σ′(ρ[1

2
− v])

(1
2

+ v)σ′(ρ[1
2

+ v])− (1
2
− v)σ′(ρ[1

2
− v])

=
(1

2
+ v)σ′(0) + (1

2
− v)σ′(0)

(1
2

+ v)σ′(0)− (1
2
− v)σ′(0)

=
1

2v
.

Since
(
2 + 1

2v

)−1
= 2v

4v+1
, we have the desired result.

(c) Take a sequence {σn}∞n=1 that converges pointwise to σ∗. Notice that limn→∞ σn(1
2

+
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v) = limn→∞ σn(1
2
− v) = 1. This means that

lim
n→∞

σ(1
2

+ v) + σ(1
2
− v)− 1

σ(1
2

+ v)− σ(1
2
− v)

=∞,

so limn→∞ c̄(v, σn) = 0.

A.5 Proofs of Proposition 2 and Theorem 2

Before showing the results, first note that W (0) = W (1) by symmetry, and

W (0) ≥ W (
1

2
)

⇐⇒ 1− c
2
· u(0) + c · u(

1

2
) +

1− c
2
· u(1) ≥ 1− c

2
· u(

1

2
) + c · u(0) +

1− c
2
· u(

1

2
)

⇐⇒ 1− c
2
· 1 + c ·

(
1

2
− v
)

+
1− c

2
· 0 ≥ 1− c

2
·
(

1

2
− v
)

+ c · 1 +
1− c

2
·
(

1

2
− v
)

⇐⇒ 2(1− c) + 2c (1− 2v) ≥ (1− c) (1− 2v) + 4c+ (1− c) (1− 2v)

⇐⇒ c (−2 + 2(1− 2v) + (1− 2v)− 4 + (1− 2v)) ≥ 2(1− 2v)− 2

⇐⇒ c (4(1− 2v)− 6) ≥ −4v

⇐⇒ c(1 + 4v) ≤ 2v. (10)

Proof of Theorem 2. By Theorem 1, the assumption that (0, 1) is a Nash equilibrium

implies v ≥ 0. When v ≥ 0, inequality (10) is equivalent to c ≤ 2v
1+4v

:= ĉ(v). Thus it

suffices to show c̄(v, σ) ≤ ĉ(v) for all v ≥ 0 and σ. This inequality c̄(v, σ) ≤ ĉ(v) holds for

v = 0 since c̄(0, σ) = ĉ(0) = 0. If v > 0, by algebraic manipulation we obtain

c̄(v, σ) ≤ ĉ(v)

⇐⇒
(

2 +
σ(1

2
+ v) + σ(1

2
− v)− 1

σ(1
2

+ v)− σ(1
2
− v)

)−1

≤ 2v

1 + 4v

⇐⇒ 1 + 4v ≤ 2v

(
2 +

σ(1
2

+ v) + σ(1
2
− v)− 1

σ(1
2

+ v)− σ(1
2
− v)

)
⇐⇒ 1 ≤ 2v ×

σ(1
2

+ v) + σ(1
2
− v)− 1

σ(1
2

+ v)− σ(1
2
− v)

⇐⇒ 1

2v
≤
σ(1

2
+ v) + σ(1

2
− v)− 1

σ(1
2

+ v)− σ(1
2
− v)

,
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which holds by inequality (8). This completes the proof.

Proof of Proposition 2. If v ≥ 0, then the statement of the Proposition is a special case

of Theorem 2 since c = 0 ≤ c̄(v, σ) for the perfectly polarized distribution. So assume

v < 0. Recall that c = 0 holds for the perfectly polarized distribution. This implies

that inequality (10) is violated, since its left hand side is zero and its right hand side is

strictly negative. Therefore W (1
2
) > W (0) = W (1). By Proposition 1, the unique Nash

equilibrium is (1
2
, 1

2
), thus completing the proof.

A.6 Proof of Theorem 3

Proof. Let (x∗A, x
∗
B) be the strategy profile as defined in the statement of the Theorem.

For any k such that uk is convex, by definition we have

uk(0) + uk(1) ≥ 2uk(
1

2
).

For any other k, uk is strictly concave and we have

uk(0) + uk(1) < 2uk(
1

2
).

Therefore, for any i ∈ {A,B} and j 6= i, x, y ∈ {0, 1}n with yk = 1− xk for all k and any

x′i = (x′i1, . . . , x
′
in) ∈ P ,

n∑
k=1

δkuk(|x′ik − xk|) +
n∑
k=1

δkuk(|x′ik − yk|) ≤
n∑
k=1

δkuk(|x∗jk − xk|) +
n∑
k=1

δkuk(|x∗jk − yk|),

with strict inequality if there exists k such that x′ik 6= 1
2

and uk is strictly concave. Since

σ is strictly increasing, this inequality implies

σ

(
−

[
n∑
k=1

δkuk(|x∗jk − xk|)−
n∑
k=1

δkuk(|x′ik − xk|)

])

≤ σ

(
n∑
k=1

δkuk(|x∗jk − yk|)−
n∑
k=1

δkuk(|x′ik − yk|)

)
.
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Thus by the symmetry assumption of σ (that is, σ(t) + σ(−t) = 1 for all t ∈ R), we have

σ

(
n∑
k=1

δkuk(|x∗jk − xk|)−
n∑
k=1

δkuk(|x′ik − xk|)

)

+σ

(
n∑
k=1

δkuk(|x∗jk − yk|)−
n∑
k=1

δkuk(|x′ik − yk|)

)
≥ 1,

with strict inequality if there exists k such that x′ik 6= 1
2

and uk is strictly concave.

Hence by the symmetry of f , we have

∑
x∈P

σ

(
n∑
k=1

δkuk(|x∗jk − xk|)−
n∑
k=1

δkuk(|x′ik − xk|)

)
f(x) ≥ 1

2

with strict inequality if there exists k such that x′ik 6= 1
2

and uk is strictly concave. This

means that P (x∗j , x
′
i) ≥ 1

2
, and symmetry implies that P (x′i, x

∗
j) ≤ 1

2
. Therefore, the only

possible deviation x′i by i from x∗i that does not reduce her winning probability is one

where x′ik 6= x̄ik for some k’s such that uk’s are convex, while x′ik = x∗ik for all other k’s.

But this deviation would keep the winning probability for i unchanged at 1
2

at best while

strictly reducing her payoff when she wins, thus it is not a profitable deviation.

Uniqueness of the Nash equilibrium holds by an analogous argument as in the proof

of Proposition 1 and Theorem 1 and hence is omitted.

A.7 Increasing Average-Marginal Ratio Properties in Logit and

Probit Models

In this section we prove the claim made in the main text when we implement the com-

parative statics in Proposition 5, which is summarized in the following proposition:

Proposition 7. 1. The logistic voting function σ̂λ satisfies the increasing average-

marginal ratio property for any λ.

2. The normal voting function σ̃p satisfies the increasing average-marginal ratio prop-

erty for any p.

Proof. Part 1. Let g(t) = τ(t)
τ ′(t)t

, where τ(t) = σ̂λ(t)− σ̂λ(0). By computation,

g(t) =
eλt − e−λt

2λt
.
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The derivative g′(t) of function g(t) is

g′(t) =
2λt[λeλt + λe−λt]− 2λ[eλt − e−λt]

(2λt)2
.

Since the denominator of g′(t) is positive for all t > 0 and 2λ is constant, it suffices to

show that

h(t) := t[λeλt + λe−λt]− [eλt − e−λt]

is positive for all t > 0. To show this, first note that h(0) = 0. Moreover,

h′(t) = [λeλt + λe−λt] + tλ2[eλt − e−λt]− [λeλt + λe−λt]

= tλ2[eλt − e−λt].

This expression is obviously nonnegative for all t ≥ 0 and strictly positive for all t > 0.

Thus h(t) is positive for all t > 0, thus so is g′(t), which implies that g(t) is increasing for

t ≥ 0.

Part 2. Let g(t) = τ(t)
τ ′(t)t

, where τ(t) = σ̃p(t)− σ̃p(0) and σ̃p is the cumulative distribu-

tion function of a normal distribution with mean zero and standard deviation s := 1/p,

N(0, s2). The derivative of g is

g′(t) =
τ ′(t)τ ′(t)t− τ(t)[τ ′′(t)t+ τ ′(t)]

(τ ′(t)t)2
.

Because the denominator of g′(t) is positive for all t > 0, we focus on the numerator

h(t) = τ ′(t)τ ′(t)t− τ(t)[τ ′′(t)t+ τ ′(t)],

and shall show that h(t) is positive for all t > 0. Since

τ ′(t) =
1√

2πs2
e−

t2

2s2

by definition, we have

τ ′′(t) = − t

s2
τ ′(t).
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Substituting this into the definition of h(t), we obtain

h(t) = τ ′(t)τ ′(t)t− τ(t)[− 1

s2
τ ′(t)t2 + τ ′(t)]

= τ ′(t)[τ ′(t)t+
1

s2
τ(t)t2 − τ(t)].

We shall show that h(t) is positive for all t > 0. To see this, first note that τ ′(t) is positive

for all t > 0. So it suffices to show that

i(t) = τ ′(t)t+
1

s2
τ(t)t2 − τ(t)

is positive for all t > 0. To show this, first note that i(0) = 0. Second, differentiating i(·)

we obtain

i′(t) = τ ′′(t)t+ τ ′(t) +
1

s2
τ ′(t)t2 +

2

s2
τ(t)t− τ ′(t)

= − 1

s2
τ ′(t)t2 +

1

s2
τ ′(t)t2 +

2

s2
τ(t)t

=
2

s2
τ(t)t

> 0.

This completes the proof.

A.8 Generalization to the case where σ is nondecreasing

The main text assumed that the voting function σ is strictly increasing. As mentioned in

footnote 13 in the main text, our results can be generalized for any nondecreasing voting

function σ at the cost of more complicated statements of the results. To illustrate this

point, in this section we present a generalization of Theorem 1 under the assumption that

σ is nondecreasing. Similar extensions can be made for other results, although we omit

them for brevity.

First, define

c̄(v, σ) =

(
2 +

σ(1
2

+ v) + σ(1
2
− v)− 1

σ(1
2

+ v)− σ(1
2
− v)

)−1

for any v such that σ(1
2

+ v) > σ(1
2
− v), and c̄(v, σ) = 0 otherwise.

Theorem 1’. 1. If σ(1
2
− v) ≤ σ(1

2
+ v) (which holds if voters’ utility function is
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convex) and c ≤ c̄(v, σ) then (0, 1) is a unique Nash equilibrium.

2. Otherwise,
(

1
2
, 1

2

)
is a unique Nash equilibrium.

Proof of Theorem 1’. As in the proof of Theorem 1, if there exists a Nash equilibrium,

then it is unique. Note that the argument did not rely on strict increasingness of σ.

Part 1. By Proposition 4, the assumption (x̄A, x̄B) = (0, 1), and symmetry, (0, 1) is

a Nash equilibrium if and only if the vote share of candidate B is at most 1
2

when she

chooses position 1
2

while candidate A chooses 0. By the argument in the proof of Theorem

1, this condition is equivalent to:

P (
1

2
, 0) ≤ 1

2

⇐⇒ c

(
3σ(

1

2
+ v)− σ(

1

2
− v)− 1

)
≤ σ(

1

2
+ v)− σ(

1

2
− v). (11)

If σ(1
2

+ v) = σ(1
2
− v), then the right-hand side of inequality (11) is clearly equal to zero

while the left-hand side is also equal to zero since 0 ≤ c ≤ c̄(v, σ) = 0, thus showing the

statement for any v such that σ(1
2

+ v) = σ(1
2
− v). If σ(1

2
− v) < σ(1

2
+ v), then since

3σ(
1

2
+ v)− σ(

1

2
− v)− 1 > 2σ(

1

2
+ v)− 1 ≥ 2 · 1

2
− 1 = 0,

the inequality (6) is equivalent to

c ≤
σ(1

2
+ v)− σ(1

2
− v)

3σ(1
2

+ v)− σ(1
2
− v)− 1

=

(
2 +

σ(1
2

+ v) + σ(1
2
− v)− 1

σ(1
2

+ v)− σ(1
2
− v)

)−1

= c̄(v, σ), (12)

showing the statement for any v such that σ(1
2
− v) < σ(1

2
+ v).

Part 2. We consider two cases. First, assume σ(1
2
− v) ≤ σ(1

2
+ v) and c > c̄(v, σ).

Then, by inequality (12), we have P (0, 1
2
) = 1− P (1

2
, 0) < 1

2
. By symmetry, P (1, 1

2
) < 1

2
.

Meanwhile, it is clear that P (1
2
, 1

2
) = 1

2
. Hence, (1

2
, 1

2
) is a Nash equilibrium of the game

with ε = 0. Moreover, it trivially satisfies “the additional property” in the statement of

Proposition 4 since P (x′i,
1
2
) < P (1

2
, 1

2
) for all x′i 6= 1

2
. Therefore, by Proposition 4, we

conclude that (1
2
, 1

2
) is a Nash equilibrium for ε > 0.
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Next assume σ(1
2
− v) > σ(1

2
+ v). From the calculation in Part 1, we have

P (
1

2
, 0) >

1

2

⇐⇒ 1− c
2

(
1− σ(

1

2
+ v)

)
+ cσ(

1

2
+ v) +

1− c
2

σ(
1

2
− v) >

1

2

⇐⇒ 1− c
2

(
1− σ(

1

2
+ v) + σ(

1

2
− v)

)
+ cσ(

1

2
+ v) >

1

2
.

Since σ(1
2

+ v) ≥ σ(0) = 1
2

for any v, the last inequality holds if

1− σ(
1

2
+ v) + σ(

1

2
− v) > 1

⇐⇒ σ(
1

2
− v) > σ(

1

2
+ v).

Therefore, because σ(1
2
− v) > σ(1

2
+ v) by assumption, P (0, 1

2
) = 1 − P (1

2
, 0) < 1

2
while

P (1
2
, 1

2
) = 1

2
by symmetry. Again, by Proposition 4, (1

2
, 1

2
) is a Nash equilibrium.
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